Distance fo a point and a line

Calendar Clock iconCalendar Clock icon

geometry

Table of contents

# Point and point

(x2x1)2+(y2y1)2\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

// C++ 14
#include <iostream>
#include <string>
#include <vector>
#include <list>
#include <algorithm>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <unordered_map>
#include <math.h>

#define ll long long
#define Int int
#define loop(x, start, end) for(Int x = start; x < end; x++)
#define loopdown(x, start, end) for(int x = start; x > end; x--)
#define rep(n) for(int x = 0; x < n; x++)
#define span(a,x,y) a.begin()+x,a.begin()+y
#define span_all(a) a.begin(),a.end()
#define len(x) (x.size())
#define last(x) (*(x.end()-1))

using namespace std;

#define EPS 0.0000000001
#define fequals(a,b) (fabs((a) - (b)) < EPS)

class Vector2 {
public:
  double x, y;
  
  Vector2(double x = 0, double y = 0): x(x), y(y) {}
  
  Vector2 operator + (const Vector2 v) const { return Vector2(x + v.x, y + v.y); }
  Vector2 operator - (const Vector2 v) const { return Vector2(x - v.x, y - v.y); }
  Vector2 operator * (const double k) const { return Vector2(x * k, y * k); }
  Vector2 operator / (const double k) const { return Vector2(x / k, y / k); }
  
  double length() { return sqrt(norm()); }
  double norm() { return x * x + y * y; }
  double dot (Vector2 const v) { return x * v.x + y * v.y; }
  double cross (Vector2 const v) { return x * v.y - y * v.x; }
  
  bool parallel(Vector2 &other) {
    return fequals(0, cross(other));
  }
  
  bool orthogonal(Vector2 &other) {
    return fequals(0, dot(other));
  }
  
  bool operator < (const Vector2 &v) {
    return x != v.x ? x < v.x : y < v.y;
  }
  
  bool operator == (const Vector2 &v) {
    return fabs(x - v.x) < EPS && fabs(y - v.y) < EPS;
  }
};

ostream & operator << (ostream & out, Vector2 const & v) { 
  out<< "Vector2(" << v.x << ", " << v.y << ')';
  return out;
}

istream & operator >> (istream & in, Vector2 & v) { 
  double x, y;
  in >> x;
  in >> y;
  v.x = x;
  v.y = y;
  return in;
}
double p2p(Vector p1, Vector p2) {
  return (p2 - p1).length();
}

# Point and line

AB×APAB\frac{|\vec{AB} \times \vec{AP}|}{\|\vec{AB}\|}

double p2Line(Vector2 a, Vector2 b, Vector2 p) {
  return abs((b - a).cross(p - a)) / (b - a).length();
}

# Point and segment

double p2Seg(Vector2 a, Vector2 b, Vector2 p) {
  if ((p - a).dot(b - a) < 0.0) return (p - a).length();
  if ((p - b).dot(a - b) < 0.0) return (p - b).length();
  return p2Line(a, b, p);
}

# Segment and segment

double distance(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4) {
  double t3 = (p1.x - p2.x) * (p3.y - p1.y) + (p1.y - p2.y) * (p1.x - p3.x);
  double t4 = (p1.x - p2.x) * (p4.y - p1.y) + (p1.y - p2.y) * (p1.x - p4.x);
  double t1 = (p3.x - p4.x) * (p1.y - p3.y) + (p3.y - p4.y) * (p3.x - p1.x);
  double t2 = (p3.x - p4.x) * (p2.y - p3.y) + (p3.y - p4.y) * (p3.x - p2.x);
  if (t3 * t4 < 0 && t1 * t2 < 0) return 0.0;
  double min_ = -1;
  min_ = min<double>(p2Seg(p1, p2, p3), p2Seg(p1, p2, p4));
  min_ = min<double>(min_, p2Seg(p3, p4, p1));
  min_ = min<double>(min_, p2Seg(p3, p4, p2));
  return min_;
}

Remote freelancer. A web and mobile application enginner.
Traveling around the world based on East Asia.
I'm looking forward to your job offers from all over the world!

Offer jobs or contact me!

Comments