Projection

Calendar Clock iconCalendar Clock icon

geometry

Table of contents

# Explanation

OB=O+OAOPOA2\vec{OB} = \vec{O} + \frac{\vec{OA} \cdot \vec{OP}}{\|OA\|^2}

# Code

// C++ 14
#include <iostream>
#include <string>
#include <vector>
#include <list>
#include <algorithm>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <unordered_map>
#include <math.h>

#define ll long long
#define Int int
#define loop(x, start, end) for(Int x = start; x < end; x++)
#define loopdown(x, start, end) for(int x = start; x > end; x--)
#define rep(n) for(int x = 0; x < n; x++)
#define span(a,x,y) a.begin()+x,a.begin()+y
#define span_all(a) a.begin(),a.end()
#define len(x) (x.size())
#define last(x) (*(x.end()-1))

using namespace std;

#define EPS 0.0000000001
#define fequals(a,b) (fabs((a) - (b)) < EPS)

class Vector2 {
public:
  double x, y;
  
  Vector2(double x = 0, double y = 0): x(x), y(y) {}
  
  Vector2 operator + (const Vector2 v) const { return Vector2(x + v.x, y + v.y); }
  Vector2 operator - (const Vector2 v) const { return Vector2(x - v.x, y - v.y); }
  Vector2 operator * (const double k) const { return Vector2(x * k, y * k); }
  Vector2 operator / (const double k) const { return Vector2(x / k, y / k); }
  
  double length() { return sqrt(norm()); }
  double norm() { return x * x + y * y; }
  double dot (Vector2 const v) { return x * v.x + y * v.y; }
  double cross (Vector2 const v) { return x * v.y - y * v.x; }
  
  bool parallel(Vector2 &other) {
    return fequals(0, cross(other));
  }
  
  bool orthogonal(Vector2 &other) {
    return fequals(0, dot(other));
  }
  
  bool operator < (const Vector2 &v) {
    return x != v.x ? x < v.x : y < v.y;
  }
  
  bool operator == (const Vector2 &v) {
    return fabs(x - v.x) < EPS && fabs(y - v.y) < EPS;
  }
};

ostream & operator << (ostream & out, Vector2 const & v) { 
  out<< "Vector2(" << v.x << ", " << v.y << ')';
  return out;
}

istream & operator >> (istream & in, Vector2 & v) { 
  double x, y;
  in >> x;
  in >> y;
  v.x = x;
  v.y = y;
  return in;
}
Vector2 project(Vector2 start_, Vector2 end_, Vector2 p) {
    Vector2 v = end_ - start_;
    return start_ + v * (v.dot(p - start_) / v.norm());
}

# Related problems

<n-link to="/en/competitive/aoj/cgl_1_a">AOJ CGL_1_A 射影</n-link>

Remote freelancer. A web and mobile application enginner.
Traveling around the world based on East Asia.
I'm looking forward to your job offers from all over the world!

Offer jobs or contact me!

Comments